PyOIF: Computational tool for modelling of multi-cell flows in complex geometries
نویسندگان
چکیده
منابع مشابه
Application of the Schwarz-Christoffel Transformation in Solving Two-Dimensional Turbulent Flows in Complex Geometries
In this paper, two-dimensional turbulent flows in different and complex geometries are simulated by using an accurate grid generation method. In order to analyze the fluid flow, numerical solution of the continuity and Navier-Stokes equations are solved using CFD techniques. Considering the complexity of the physical geometry, conformal mapping is used to generate an orthogonal grid by means of...
متن کاملSpectral Element Methods for Transitional Flows in Complex Geometries
We describe the development and implementation of an efficient spectral element code for simulating transitional flows in complex three-dimensional domains. Critical to this effort is the use of geometrically nonconforming elements that allow localized refinement in regions of interest, coupled with a stabilized high-order time-split formulation of the semi-discrete Navier–Stokes equations. Sim...
متن کاملNumerical Modelling of Viscoplastic Free Surface Flows in Complex 3d Geometries
We study a numerical method for the simulation of free surface flows of viscoplastic (Herschel-Bulkley) fluids. The approach is based on the level set method for capturing the free surface evolution and on locally refined and dynamically adapted octree cartesian staggered grids for the discretization of fluid and level set equations. We consider an extension of the stable approximation of the N...
متن کاملA Brinkman penalization method for compressible flows in complex geometries
To simulate flows around solid obstacles of complex geometries, various immersed boundary methods had been developed. Their main advantage is the efficient implementation for stationary or moving solid boundaries of arbitrary complexity on fixed non-body conformal Cartesian grids. The Brinkman penalization method was proposed for incompressible viscous flows by penalizing the momentum equations...
متن کاملLarge-Eddy Simulation of Reacting Turbulent Flows in Complex Geometries
Large-eddy simulation (LES) has traditionally been restricted to fairly simple geometries. This paper discusses LES of reacting flows in geometries as complex as commercial gas turbine engine combustors. The incompressible algorithm developed by Mahesh et al. (J. Comput. Phys., 2004, 197, 215–240) is extended to the zero Mach number equations with heat release. Chemical reactions are modeled us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: PLOS Computational Biology
سال: 2020
ISSN: 1553-7358
DOI: 10.1371/journal.pcbi.1008249